Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Group discussions are usually aimed at sharing opinions, reaching consensus and making good decisions based on group knowledge. During a discussion, participants might adjust their own opinions as well as tune their attitudes towards others’ opinions, based on the unfolding interactions. In this paper, we demonstrate a framework to visualize such dynamics; at each instant of a conversation, the participants’ opinions and potential influence on their counterparts is easily visualized. We use multi-party meeting opinion mining based on bipartite graphs to extract opinions and calculate mutual influential factors, using the Lunar Survival Task as a study case.more » « less
-
Studying group dynamics requires fine-grained spatial and temporal understanding of human behavior. Social psychologists studying human interaction patterns in face-to-face group meetings often find themselves struggling with huge volumes of data that require many hours of tedious manual coding. There are only a few publicly available multi-modal datasets of face-to-face group meetings that enable the development of automated methods to study verbal and non-verbal human behavior. In this paper, we present a new, publicly available multi-modal dataset for group dynamics study that differs from previous datasets in its use of ceiling-mounted, unobtrusive depth sensors. These can be used for fine-grained analysis of head and body pose and gestures, without any concerns about participants' privacy or inhibited behavior. The dataset is complemented by synchronized and time-stamped meeting transcripts that allow analysis of spoken content. The dataset comprises 22 group meetings in which participants perform a standard collaborative group task designed to measure leadership and productivity. Participants' post-task questionnaires, including demographic information, are also provided as part of the dataset. We show the utility of the dataset in analyzing perceived leadership, contribution, and performance, by presenting results of multi-modal analysis using our sensor-fusion algorithms designed to automatically understand audio-visual interactions.more » « less
-
Group meetings can suffer from serious problems that undermine performance, including bias, "groupthink", fear of speaking, and unfocused discussion. To better understand these issues, propose interventions, and thus improve team performance, we need to study human dynamics in group meetings. However, this process currently heavily depends on manual coding and video cameras. Manual coding is tedious, inaccurate, and subjective, while active video cameras can affect the natural behavior of meeting participants. Here, we present a smart meeting room that combines microphones and unobtrusive ceiling-mounted Time-of-Flight (ToF) sensors to understand group dynamics in team meetings. We automatically process the multimodal sensor outputs with signal, image, and natural language processing algorithms to estimate participant head pose, visual focus of attention (VFOA), non-verbal speech patterns, and discussion content. We derive metrics from these automatic estimates and correlate them with user-reported rankings of emergent group leaders and major contributors to produce accurate predictors. We validate our algorithms and report results on a new dataset of lunar survival tasks of 36 individuals across 10 groups collected in the multimodal-sensor-enabled smart room.more » « less
An official website of the United States government

Full Text Available